GESTIÓN EDUCATIVA UNA HERRAMIENTA PARA LA MEJORA DE LA EDUCACIÓN - CIENCIA Y TECNOLOGÍA


Aprendizaje y enseñanza: Teoría de Situaciones Didácticas

La teoría que estamos describiendo, en su formulación global, incorpora también una visión propia del aprendizaje matemático, aunque pueden identificarse planteamientos similares sobre aspectos parciales en otras teorías.

Se adopta una perspectiva piagetiana, en el sentido de que se postula que todo conocimiento se construye por interacción constante entre el sujeto y el objeto, pero se distingue de otras teorías constructivistas por su modo de afrontar las relaciones entre el alumno y el saber. Los contenidos son el substrato sobre el cual se va a desarrollar la jerarquización de estructuras mentales.

 

Pero además, el punto de vista didáctico imprime otro sentido al estudio de las relaciones entre los dos subsistemas (alumno - saber). El problema principal de investigación es el estudio de las condiciones en las cuales se constituye el saber pero con el fin de su optimización, de su control y de su reproducción en situaciones escolares. Esto obliga a conceder una importancia particular al objeto de la interacción entre los dos subsistemas, que es precisamente la situación - problema y la gestión por el profesor de esta interacción.

Como indica Balachef (1990a) se está reconociendo en los trabajos sobre Psicología de la Educación Matemática la importancia crucial que presentan las relaciones entre los aspectos situacionales, el contexto y la cultura y las conductas cognitivas de los alumnos. Esta dimensión situacional, que subyace - explícitamente o no - en cualquier estudio sobre procesos de enseñanza, raramente es considerada como objeto de investigación por sí misma. Pensamos que la Teoría de Situaciones Didácticas de G. Brousseau es una iniciativa en este sentido.

Una situación didáctica es un conjunto de relaciones explícita y/o implícitamente establecidas entre un alumno o un grupo de alumnos, algún entorno (incluyendo instrumentos o materiales) y el profesor con un fin de permitir a los alumnos aprender - esto es, reconstruir - algún conocimiento. Las situaciones son específicas del mismo.

Para que el alumno "construya" el conocimiento, es necesario que se interese personalmente por la resolución del problema planteado en la situación didáctica. En este caso se dice que se ha conseguido la devolución de la situación al alumno.

El proceso de resolución del problema planteado se compara a un juego de estrategia o a un proceso de toma de decisiones. Existen diferentes estrategias, pero sólo algunas de ellas conducen a la solución del problema y a la construcción por el alumno del conocimiento necesario para hallar dicha solución. Este conocimiento es lo que se puede ganar, lo que está en juego, ("enjeu") en la situación. De este modo, la teoría de situaciones es una teoría de aprendizaje constructiva en la que el aprendizaje se produce mediante la resolución de problemas. Como teoría de resolución de problemas, asigna un papel crucial al resolutor. Comparada, por ejemplo a la Teoría del Procesamiemto de la Información que asimila el proceso de resolución con el funcionamiento de un ordenador, asigna al resolutor el papel de un decisor que desea hallar la estrategia ganadora y tiene la posibilidad de modificar su estrategia inicial una vez iniciado el proceso de solución.

Los obstáculos y sus tipos

El aprendizaje por adaptación al medio, implica necesariamente rupturas cognitivas, acomodaciones, cambio de modelos implícitos (concepciones), de lenguajes, de sistemas cognitivos. Si se obliga a un alumno o a un grupo a una progresión paso a paso, el mismo principio de adaptación puede contrariar el rechazo, necesario, de un conocimiento inadecuado. Las ideas transitorias resisten y persisten. Estas rupturas pueden ser previstas por el estudio directo de las situaciones y por el indirecto de los comportamientos de los alumnos (Brousseau, 1983).

Un obstáculo es una concepción que ha sido en principio eficiente para resolver algún tipo de problemas pero que falla cuando se aplica a otro. Debido a su éxito previo se resiste a ser modificado o a ser rechazado: viene a ser una barrera para un aprendizaje posterior. Se revela por medio de los errores específicos que son constantes y resistentes. Para superar tales obstáculos se precisan situaciones didácticas diseñadas para hacer a los alumnos conscientes de la necesidad de cambiar sus concepciones para ayudarles en conseguirlo.

 Brousseau (1983) da las siguientes características de los obstáculos:

- un obstáculo es un conocimiento, no una falta de conocimiento;

- el alumno utiliza este conocimiento para producir respuestas adaptadas en un cierto contexto que encuentra con frecuencia;

- cuando se usa este conocimiento fuera de este contexto genera respuestas incorrectas. Una respuesta universal exigiría un punto de vista diferente;

- el alumno resiste a las contradicciones que el obstáculo le produce y al establecimiento de un conocimiento mejor. Es indispensable identificarlo e incorporar su rechazo en el nuevo saber;

- después de haber notado su inexactitud, continúa manifestándolo, de forma esporádica.

Observamos que, frente a la teoría psicológica que atribuye los errores de los alumnos a causas de tipo cognitivo, se admite aquí la posibilidad de que tales errores puedan ser debidos a causas epistemológicas y didácticas, por lo que la determinación de este tipo de causas proporciona una primera vía de solución.

Relación con el saber: Relatividad del conocimiento respecto de las instituciones

Desde una perspectiva antropológica, la Didáctica de la Matemática sería el estudio del Hombre - las sociedades humanas - aprendiendo y enseñando matemáticas. Para Chevallard (1989) el objeto principal de estudio de la Didáctica de la Matemática está contituido por los diferentes tipos de sistemas didácticos - formados por los subsistemas: enseñantes, alumnos y saber enseñado - que existan actualmente o que puedan ser creados, por ejemplo, mediante la organización de un tipo especial de enseñanza.

La problemática del estudio puede ser formulada, globalmente y a grandes rasgos, con la ayuda del concepto de relación con el saber (rapport au savoir) (institucional y personal). Para este autor, dado un objeto conceptual, "saber" o "conocer" dicho objeto no es un concepto absoluto, sino que depende de la institución en que se encuentra el sujeto. Así la expresión "sabe probabilidad", referida a una persona dada, puede ser cierta si nos referimos a las probabilidades estudiadas en la escuela y falsa si nos referimos al mundo académico, e incluso en éste habría que diferenciar si nos referimos al conocimiento necesario para la enseñanza en los primeros cursos de una carrera técnica o al que sería preciso para realizar investigación teórica sobre Cálculo de Probabilidades.

Hay que distinguir pues entre relación institucional (saber referido al objeto conceptual, que se considera aceptable dentro de una institución) y relación personal (conocimiento sobre el objeto de una persona dada) que puede estar o no en coincidencia con el institucional para la institución de la que forma parte. Sobre estos conceptos, se plantean dos preguntas fundamentales:

(1) ¿Cuáles son las condiciones que aseguran la viabilidad didáctica de tal elemento del saber y de tal relación institucional y personal a este elemento del saber?

(2) ¿Cuáles son las restricciones que pueden impedir satisfacer estas condiciones?

El problema central de la Didáctica es para este autor el estudio de la relación institucional con el saber, de sus condiciones y de sus efectos. El estudio de la relación personal es en la práctica fundamental, pero epistemológicamente secundario. Este programa, sin embargo, no puede tener éxito sin una toma en consideración del conjunto de condicionantes (cognitivos, culturales, sociales, inconscientes, fisiológicos, etc.) del alumno, que juegan o pueden jugar un papel en la formación de su relación personal con el objeto de saber en cuestión.

 

Transposición didáctica

La relatividad del saber a la institución en que se presenta lleva al concepto de transposición didáctica, (Chevallard, 1985), el cual se refiere a la adaptación del conocimiento matemático para transformarlo en conocimiento para ser enseñado.

En una primera fase de la transposición se pasa del saber matemático al saber a enseñar. Se pasa de la descripción de los empleos de la noción a la descripción de la misma noción y la economía que supone para la organización del saber. La constitución de un texto para fines didácticos, reduce así la dialéctica, esencial al funcionamiento del concepto, de los problemas y los útiles matemáticos. Hay una descontextualización del concepto. También se asiste a un fenómeno de deshistorización, por el cual el saber toma el aspecto de una realidad ahistórica, intemporal, que se impone por si misma, que, no teniendo productor, no puede ser contestada en su origen, utilidad o pertinencia.

Una vez realizada la introducción del concepto, el funcionamiento didáctico va, progresivamente, a apoderarse de él para hacer "algo", que no tiene por qué tener relación con los móviles de quienes han concebido el programa. Su inmersión en el saber enseñado va a permitir finalmente su recontextualización. Pero ésta no conseguirá, en general, sobre todo en los primeros niveles de enseñanza, ni reconstituir el modo de existencia original de la noción, ni llenar todas y únicamente las funciones para las cuales se había decidido introducirlo.

Por ejemplo, y refiriéndonos el tema de la Probabilidad condicional, es frecuente en los textos de Bachillerato encontrar un nuevo concepto relacionado con ella que es inexistente en el Cálculo de Probabilidades a nivel académico. Nos referimos al denominado "suceso condicionado", del que pueden verse en numerosos textos definiciones similares a la siguiente:

"Al suceso consistente en que se cumpla B habiéndose cumplido A, se le llama suceso B condicionado a la verificación del suceso A y se escribe B/A"

Sin embargo, el álgebra de sucesos es siempre isomorfa a un álgebra de conjuntos y las únicas operaciones posibles en un álgebra de conjuntos son la usuales de unión, intersección y diferencia. El estudio de la transposición didáctica se preocupa, entre otras cuestiones, de detectar y analizar esta clase de diferencias y hallar las causas por las cuales se han producido, con objeto de subsanarlas y evitar que la enseñanza transmita significados inadecuados sobre los objetos matemáticos.

Otros nociones teóricas

Además de las nociones anteriores, otros conceptos teóricos de interés son los siguientes:

Contrato didáctico

El contrato didáctico es un conjunto de reglas - con frecuencia no enunciadas explícitamente - que organizan las relaciones entre el contenido enseñado, los alumnos y el profesor dentro de la clase de matemáticas (Brousseau, 1986).

Como ejemplo de este fenómeno se suele citar la investigación de Stella Baruk referida a la contestación de una amplia muestra de alumnos al problema denominado
"la edad del capitán". Un enunciado típico de este problema es el siguiente:

Un barco mide 37 metros de largo y 5 de ancho.¿Cuál es la edad del capitán?

Preguntados sobre este problema, la mayoría de los niños en los primeros años escolares responde que 42 o 32 años. Si se cambia el enunciado, incluyendo otros datos o variando los números se da como respuesta un valor que pueda obtenerse mediante operaciones aritméticas con los datos del enunciado. Son muy pocos los casos de niños que contestan que no tiene sentido la pregunta.

El interés de esta noción se debe a que muchos estudiantes responden a una cuestión, no según un razonamiento matemático esperado, sino como consecuencia de un proceso de decodificación de las convenciones didácticas implícitas. Los estudios sobre el contrato didáctico y sus relaciones con los procesos de aprendizaje son esenciales ya que lo que está en juego es el significado real del conocimiento construido por los alumnos.


PROVERVIOS CHINOS:

El que hace una pregunta parece tonto por cinco minutos, el que no la hace es tonto toda su vida.

La puerta mejor cerrada es aquella que podemos dejar abierta.

Para ser inteligente toda la vida es necesario ser estúpido un instante.

No es necesario elevar la voz cuando se tiene la razón



Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis